# **Bicycle and Pedestrian Detection**

Mike McIntee Director, Northwest Sales





## It's the Law!

- California AB 1581 (2007, Fuller)
  - Sec 1(a)(1): Bicyclists and motorcyclists are legitimate users of California roadways First installation of signal or when replacing loop detectors

  - Detection (not differentiation)
  - Delayed implementation until CalTrans published standards, specs, guidelines
  - Repealed January 1, 2018

#### CVC 21450.5; CalTrans Policy Directive 09-06 (August 2009)

- Incorporated AB 1581 into the CA MUTCD (2012)
- 6' x 6' zone immediately behind the limit line
- "If more than 50% of the limit line detectors must be replaced  $\rightarrow$  entire intersection
- Gmin = 6 seconds
- If detector can discriminate, can extend Gmin













## Funding

- Since 1992 bicycle and pedestrian projects have been eligible for federal transportation funding.
- Since then, states have spent over \$7.2 billion on 22,000 dedicated bicycle and pedestrian projects.
- 1/2 of the funds are distributed to MPOs
- Per FHWA "virtually all the major transportation funding programs can be used for bicycle and pedestrian-related projects."







## **Funding!**

- State Programs:
  - ATP (2013), CMAQ, HSIP, SHOPP
- Complete Streets
  - Caltrans Deputy Directive 64-R2 directs Caltrans to implement Complete Streets
- Vision Zero







## **Growing City Areas**

A 2011 survey found nearly 2/3 of 18 to 32 year-olds preferred to live in walkable/bikeable communities with nearby retail shops, restaurants, cafes, bars, and workplaces.

Unwanted Costs of Vehicle Ownership









### **1978 vs 2008 US Licensed Drivers**



16 Year Olds
19 Year Olds



#### 1978 VS 2008 16 & 19 YEAR OLDS



## **Growth of Bicycle Commutes**

#### 46% increase in bicyclists on the road since 2005

**BICYCLE COMMUTING** 



#### From 2000 to 2013, bicycle commuting rates in Bicycle Friendly Communities increased 105%



NATIONALLY, since 2005, states have seen, on average, a 46% increase in the share of people commuting by bike. But an average is just that - there are many states that



## **Bike Sharing Systems**

Of the 2,655 bikeshare stations, 86.3% (2,291) are located within 1 block of a scheduled public transportation mode

Bicycles are often used to connect to and from Public Transportation









#### And What About...









## **Changing Modes of Transportation**

In 2009, 16 to 34-year-olds took:

- 24% more bike trips than they took in 2001
- 16% more walked to their destination
- 40% more passenger miles on transit







#### han they took in 2001 their destination miles on transit









**Detection Techniques** 



## **Bicycle Differentiation Benefits**

- Allow for longer initial or min-green for Bicycles
- Allows use of separate timing from Vehicles or Pedestrians
- Allows for Extension when Bicycle is approaching so rider is not stranded in intersection with opposing phase becoming green
- Allows for Bicycle Counts to determine what application makes the most sense at that intersection
- Provide time of day data







### Loops

#### LOOP CONNECTION







Note direction of loop current: especially in center segments of loop (same direction)

### Improved Loops





#### C-1101/1201-B

Stop bar (round) and dual use





#### Ontario, CA



## C1101-B / C1201-B (Differentiating Detector)

- Differentiates between bicycles and other two wheeled vehicles and all other vehicles.
- Provides bike initial (min green) and extension timing
  - Requires knowledge of field greens on bike phases.
  - Econolite NEMA cabinets provide this to the back plane of the detector rack
  - 33X cabinets require an additional piece of equipment call a Phase Green Interface
- Requires a specially designed loop (parallelogram)
- Can be used for designated bike lanes or dual use lanes.
- No special detector setup required
- Provides bike count outputs and loop errors to TS2 controller





### **AutoScope Vision**





# Accurate. Versatile. Simple.



### **Bicycle Differentiation**









#### 64 Outputs



#### **Comm Manager**

## SDLC Interface to SDLC Cable





#### Cobalt



#### Accuscan Radar











Pedestrians



### **Stereoscopic Vision**





Trafficon Safe Walk (2009)

- 2 ea CMOS 1/3" B/W cameras
- Monitoring area 3m x 4m
- Stationary and moving pedestrians

Vimo by Motionloft

- Vehicle and ped detection and tracking
- Commercial use: storefronts
- Traffic applications:
  - Vehicle and ped counts
  - Ped pathway tracking





#### WTI J5 (2018)

- 2018 product introduction from WTI
- Ped detection and motion tracking
- Location, speed, trajectory





## **New Forms and Applications**









### **Thank You!**

### mmcintee@econolite.com C: 916.799.8796

