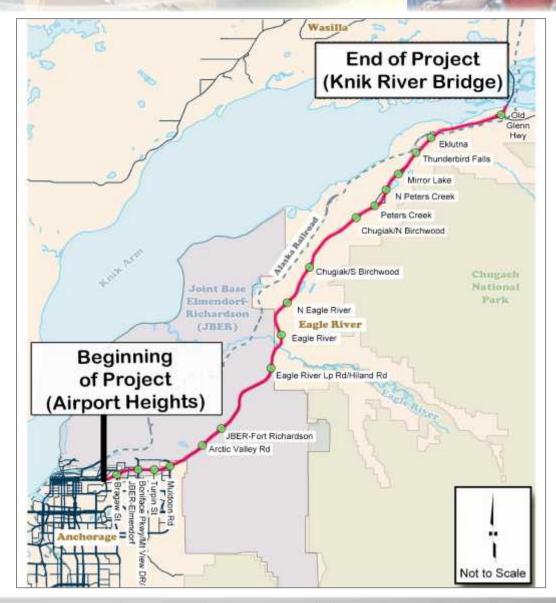


Anchorage Metropolitan Area Transportation Solutions (AMATS): Glenn Highway Integrated Corridor Management (ICM) Study

Infrastructure


- Purpose
- Existing Conditions
- Data
- Strategies

Incident Management

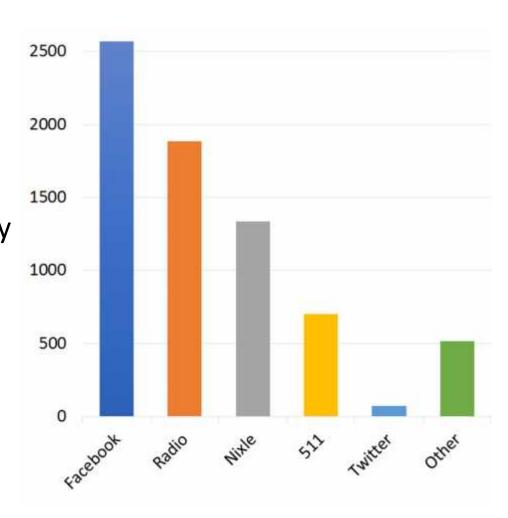
- Purpose and Need
- Objectives
- Traffic Control Plans

Project Area

ICM Study Purpose

- Identify methods to improve efficiency
- Discuss how existing facilities and agency coordination can be used during incident management

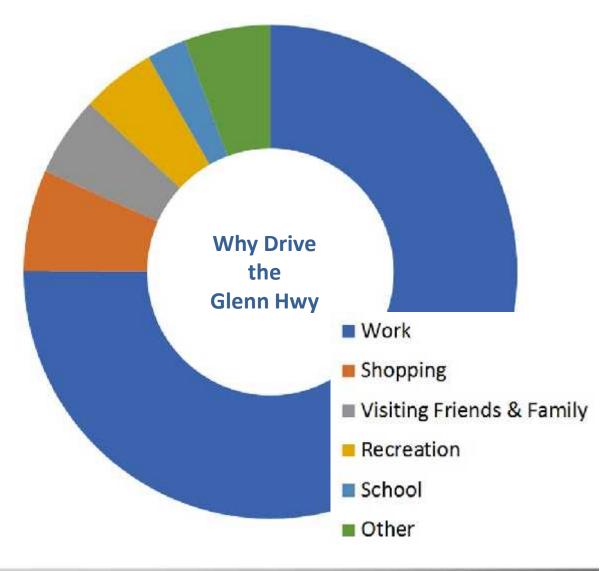
Discuss future infrastructure, technology, and agency needs

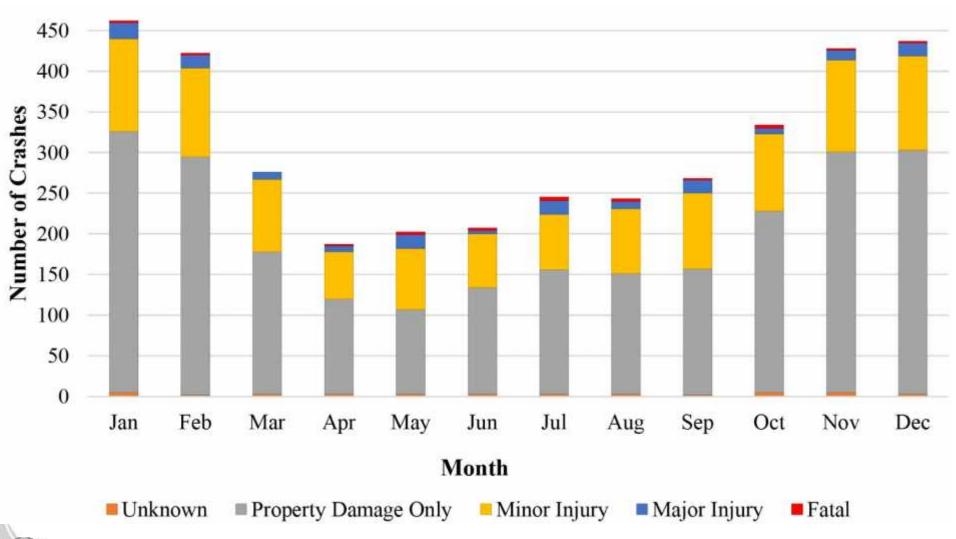

- 1 Permanent Changeable Message Board
- 4 CCTV Along The Glenn Providing Weather Info
- **3 Enviro Sensors That Integrate With 511**

How People Currently Get Information

- The Glenn Highway has sections without parallel routes
- Segments with alternative routes, but not able to meet the capacity of the Glenn Hwy
- Limited locations to turn traffic around
- Limited ways to inform the traveling public when an incident has occurred
- High cost of crashes and delays

DOT&PF Facebook




Why Drive the Glenn Highway

- More than 35,000
 vehicles travel the Glenn
 Hwy between
 Anchorage and the Knik
 River Bridges every day
- Used for work, commercial transport, recreation, and more
- STRAHNET— considered critical to US strategic operations

Crashes (2005 to 2014)

Crash Costs: Analysis

FHWA NATIONAL CRASH COST:

K: Fatal Injury = \$ 11,295,400

A: Serious Injury = \$655,000

B: Minor Injury = \$ 198,500

C: Possible Injury = \$ 125,600

O: No Apparent Injury = \$11,900

ALASKA 2018 CRASH VALUES:

K: Fatal Injury = \$ 10,100,000

A: Serious Injury = \$700,000

B: Minor Injury = \$ 140,000

C: Possible Injury = \$ 73,000

O: No Apparent Injury = \$7,700

Crash Cost: Glenn Highway

Summer Cost of Crashes (N	May thru Oct, 2	005 to 2014) in 2018 AK	(Values
Crash Severity	# of Crashes	Cost per Crash	10 Year Cost
Property Damage only	808	\$ 7,700	\$ 6,221,600
Minor Injury	440	\$ 140,000	\$ 61,600,000
Major Injury	70	\$ 700,000	\$ 49,000,000
Fatal	11	\$ 10,100,000	\$ 111,100,000

Winter Cost of Crashes (No	ov thru April 20	05 to 2014)	
Crash Severity	# of Crashes	Cost per Crash	10 Year Cost
Property Damage only	1608	\$ 7,700	\$ 12,381,600
Minor Injury	636	\$ 140,000	\$ 89,040,000
Major Injury	80	\$ 700,000	\$ 56,000,000
Fatal	7	\$ 10,100,000	\$ 70,700,000

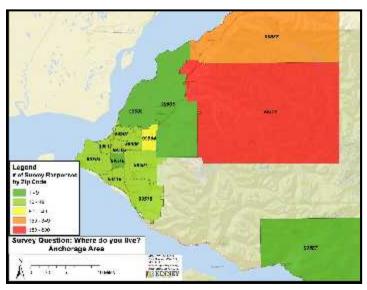
Value of Delay

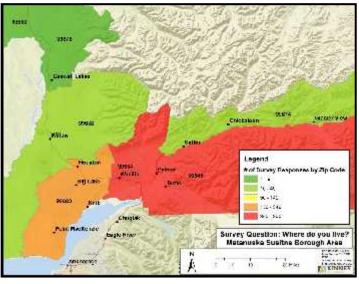
Table 16: Value of Time Guidance and Calculations

Parameter	Definition	Source or Calculation
Median income (Anchorage)	\$ 80,862	US Census
Number of work hours in a year	2,080	US DOT Guidance
Hourly work income	\$ 38.88	= median income ÷ work hours/year
Value of personal travel time as % of hourly work income	70%	US DOT Guidance
Value of business travel time as % of hourly work income	100%	US DOT Guidance
Value of personal travel time (\$/hour)	\$ 27.21	= hourly work income × value of personal travel time as %
Value of business travel time (\$/hour)	\$ 38.88	= hourly work income × value of business travel time as %
% of personal travel on roadway	78.6%	US DOT Guidance
% of business travel on roadway	21.4%	US DOT Guidance
Vehicle occupancy rate	1.1	AMATS, "Status of the System Report," 2016 and 2010
Value of Time	\$ 32.68	— (Value of personal time × % personal travel) + (value) f business time × % business travel)) × vehicle occupancy rate

SOURCE: US DOT Guidance = "Revised Departmental Guidance on Valuation of Travel Time in Economic Analysis", September 27, 2016. Accessed at https://www.transportation.gov/office-policy/transportation-policy/revised-departmental-guidance-valuation-travel-time-economic on September 13, 2018.

COMBINED COST OF CRASHES AND DELAY				
Summer	May to October	\$22,792,000		
Winter	November to April	\$22,812,000		
Delay		\$ 1,700,000		
Annual		\$47,304,000		


Cost of Crashes = \$ 456 Million from 2005 to 2014 Cost of Delay = \$ 17 Million from 2005 to 2014


\$473 Million Dollars

Public and Agency Input

- Metroquest Online Survey
 4,891 participants
- Public Input: Online survey, open House Meeting, Community Council Meetings, Anchorage Metropolitan Area Transportation Solutions (AMATS) Meetings, Anchorage & Mat-Su Transportation Fairs
- Agency Input: Stakeholder Meeting,
 Department of Transportation, Municipality of
 Anchorage and Mat-Su Borough, Emergency
 Responders, Transit, Joint Base Elmendorf Richardson (JBER), Alaska Railroad, Alaska
 Trucking Association, Tribal Representatives, and
 Chugiak/Birchwood/Eagle River Rural Road
 Service Area (CBERRRSA)

Study Objectives

Goal A: Improve Safety

Goal B: Improve Mobility

Goal C: Improve Incident and Emergency Management

Goal D: Improve Information Sharing

Roadway Strategies:

- 4 New Frontage Roads
- 5 Interchange upgrades
- Adaptable shoulder lanes

Institutional Strategies:

- Incident Management plans
- Service Patrol Program
- Virtual Traffic Management Center Improvements

Strategies report available here:

http://dot.alaska.gov/stwdmno/documents/glennlCM/glennhwyicm-chapter-4.pdf

TECHNOLOGY BASED STRATEGIES:

- Virtual Traffic Management Center Improvements
- Device Expansion
- Variable Speed Limit Systems
- Snow Removal Equipment Tracking
- Environmental Sensor & 511 Integration
- Over Height Vehicle Detection
- Connected Vehicle Pilot Program
- Advanced Traffic Management System
- Traffic Incident Detection Algorithm for cameras
- Portable Changeable Message Boards
- Additional Permanent Changeable Message Boards

AMATS: Integrated Corridor Management Study

Incident Management & Traffic Control Plans (TCP's)

Need & Purpose

Legislative Intent for DOT&PF for FY 2019:

It is the intent of the legislature that given the March 2018 accident that closed the Glenn Highway, rerouting traffic for multiple days and negatively impacting commuters and local communities, the Department of Transportation and Public Facilities develop a temporary traffic control plan, as well as emergency traffic control guidelines for the Glenn Highway, specifically from milepost 0 to milepost 35 and make the plan and guidelines available to the legislature and the public by January 30, 2019.

DOT&PF Contracted to:

- Develop temporary traffic control measures that can be used by the incident command management team as needed on the Glenn Highway
- The traffic control plans (TCP's) will include information needed to redirect traffic and inform the public during a non-recurring event/s
- Identify the capacity of alternate routes

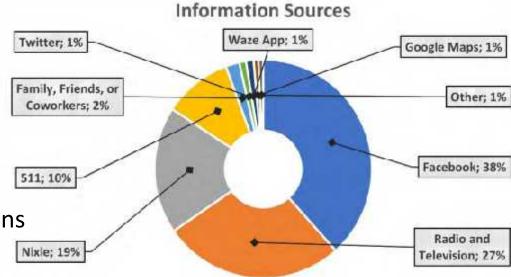
Stakeholders

Involvement in the Development of the TCP's

- Anchorage Police Department (APD)
- Municipality of Anchorage
- Emergency Responders
- Transit People Mover and Valley Transit
- Joint Base Elmendorf Richardson
- Alaska Railroad
- Native Village of Eklutna
- Trucking / Freight
- Anchorage School District Transportation Department
- Chugiak/Birchwood/Eagle River Rural Road Service Area (CBERRRSA)
- Community Council
- Public Outreach

Objectives

Equipment Staging Plan


- Where equipment will be located
- How to get it to the location
- What equipment is needed

Communication Plan

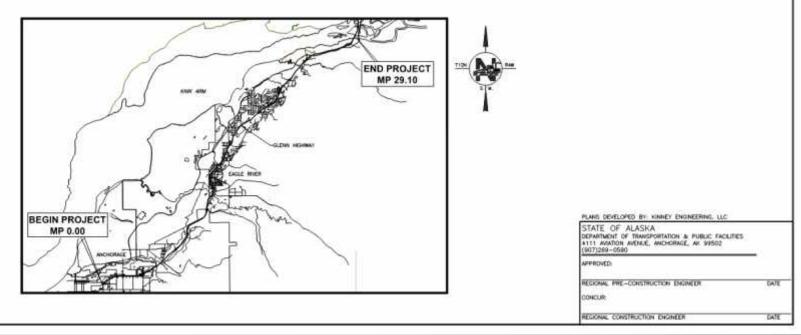
- Agencies contacted
- How the contact will be made
- How to reach the public so they can make informed travel decisions

Traffic Control Plans

- Describe proposed detour routes and equipment needed to implement them
- Consider short term and long term detour needs

Traffic Control Plans

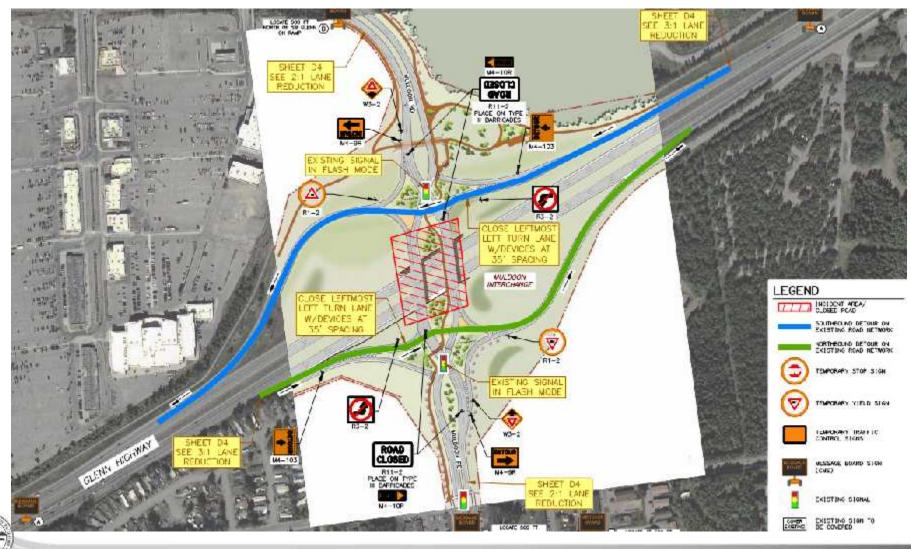
DEPARTMENT OF TRANSPORTATION AND PUBLIC FACILITIES


	INDEX	
SHEET NO.	DESCRIPTION	
A1	COVER SHEET	
A2	DETALED HODE OF SHEETS	
DX-D4	CENERAL DETALS	
11-3-014-Q	INTERCHANCE TRAFFIC CONTROL PLANS	
41.1-417-0	RESMENT TRAFFIC CONTROL PLANS	

OA16052/CFHWY00289

PROPOSED HIGHWAY PROJECT

GLENN HIGHWAY INTEGRATED CORRIDOR MANAGEMENT (ICM) STUDY - PHASE II PROJECT NO. OA16052/CFHWY00289


TRAFFIC CONTROL PLANS

Interchange Closure

Muldoon:

Interchange Closure

Muldoon: Detour Capacity

CAPACITY CRITERIA QUALITIES OF NORTHBOUND DETOUR SEGMENTS

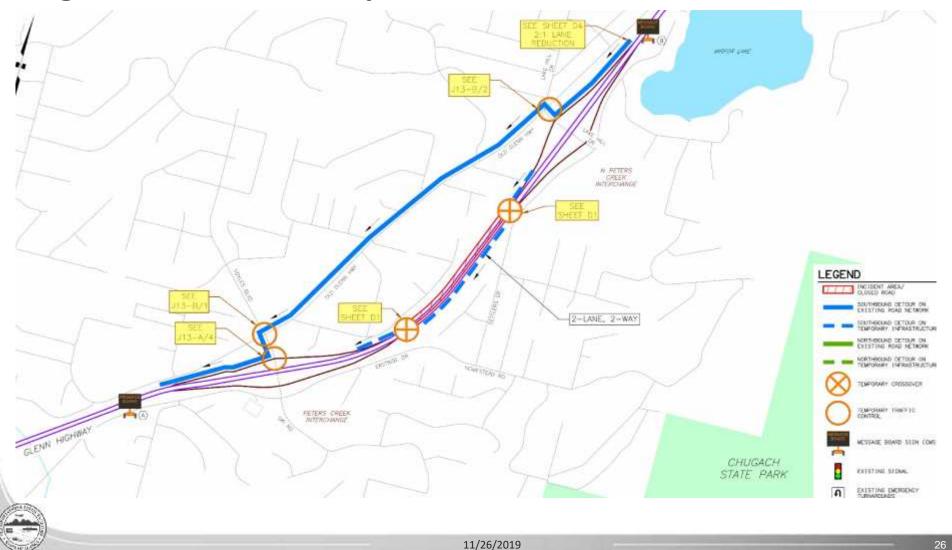
SEGMENT	.1	2	3	4
LENGTH (MILES)	0.19	0.80	0.10	0.32
NUMBER OF LANSS IN DETOUR DIFFELITION	1	1	2	2
DRIVEWAY DENSITY	Low	lun	Low	Tem
MEDIAN TYPE	Open	Open	Closed	Cosed
OTHER DESIGN FEATURES (SEE NOTE)	-	25 MPH SPEED LIMIT		-
AVERAGE AADT (2015 - 2017)	3,500	4,600	24.250	9,850
SEGMENT DETOLIR CAPACITY RATING	*	*	***	*
COMMUNITY IMPACT	Low	Low	Low	_cw

Note: Standard design teatures include posted speeds of 35 mph or greater. James 12 if Aide or greater, shouldess 6 it wide or greater, and level terrain. Unless otherwise notes, the segment has standard design teatures.

CAPACITY CRITERIA QUALITIES OF SIGNALS ON NORTHBOUND DETOUR

SIGNAL	а	
NUMBER OF LANSS IN	1	
DETGUR DIRECTION		
DETOUR APPROACH ON	No	
MAJOF TOAD?		
MOVEMENT	Left	
ANE REDUCTION (MERGE)		
PRIOR TO INTERSECTION	No	
SIGNAL DETOUR	4	
CAPACITY RATING		

OFF PEAKT-WEL SPEED
THROUGH DETOUR
20 MPH


Northbound (NB)

Segment closure with parallel routes:

Southbound (SB)

Segment closure with parallel routes:

NB and SB Closure

Parallel routes available:

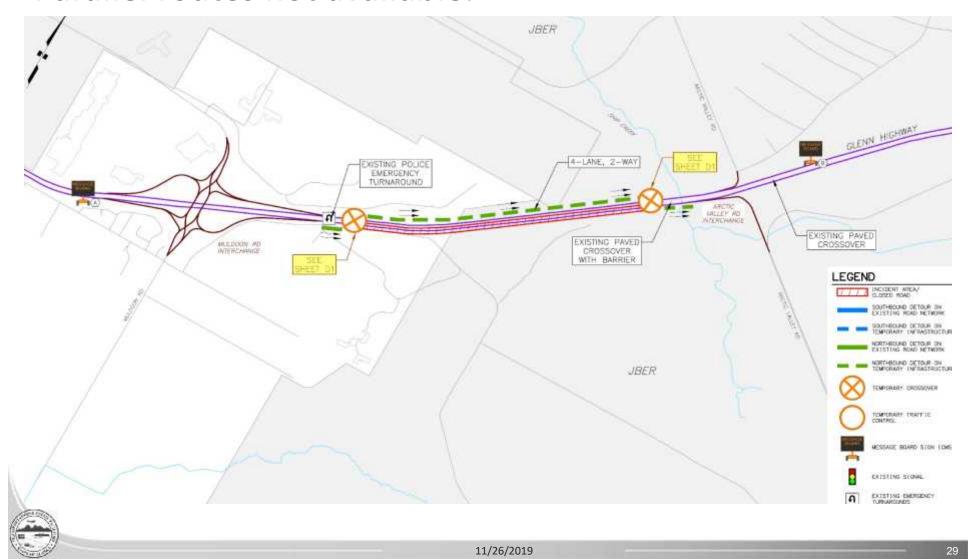
NB and SB Closure

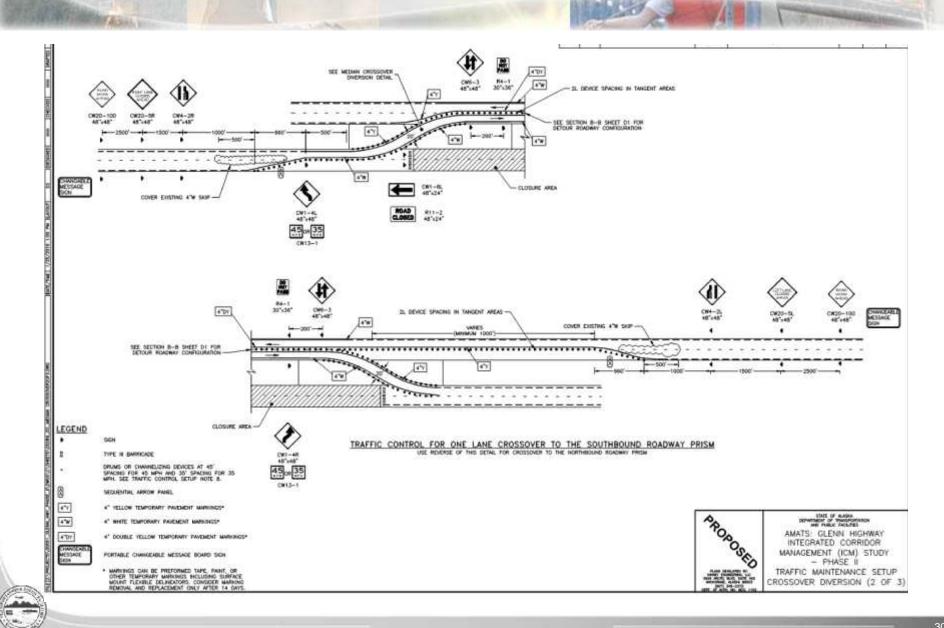
Capacity of Detour Routes:

CAPACITY CRITERIA QUALITIES OF SOUTHBOUND DETOUR SEGMENTS

SEGMENT	-1,	2	3	.4	5
LENGTH (MILES)	0.20	C.03	0.91	0.06	0.17
NUMBER OF LANES IN DETOLIB DIRECTION	1	1	1	1	1
(PROEWA* DENSEY	bew	tow	нівт	1,00	Low
MEDIANTYPE	Clased	Open	Open	Open	Closed
OTHER DESIGN FEATURES (SEE NOTE)	E-1	*	NARROW SHOULDERS	190	9
AVERAGE ANDT (2015 - 2017)	400	800	1,060	6,350	3,150
SEGMENT DETOUR CAPACITY RATING	***	**	**	*	* *

Note: Standard design factures include pooled apadd limits of 25 mph or greater, lance 12 ft wide or greater, shoulders 6 ft wide or greater, and level terrain. Unless otherwise notes, the segment has standard design features.


OFF PEAK TREVEL SPEED THROUGH DETOUR 30 MPH

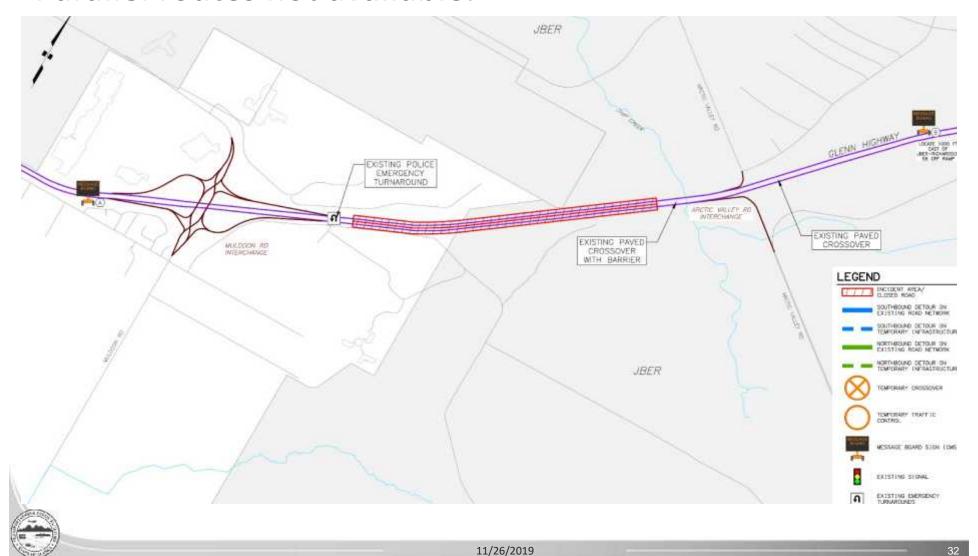


NB Segment Closure

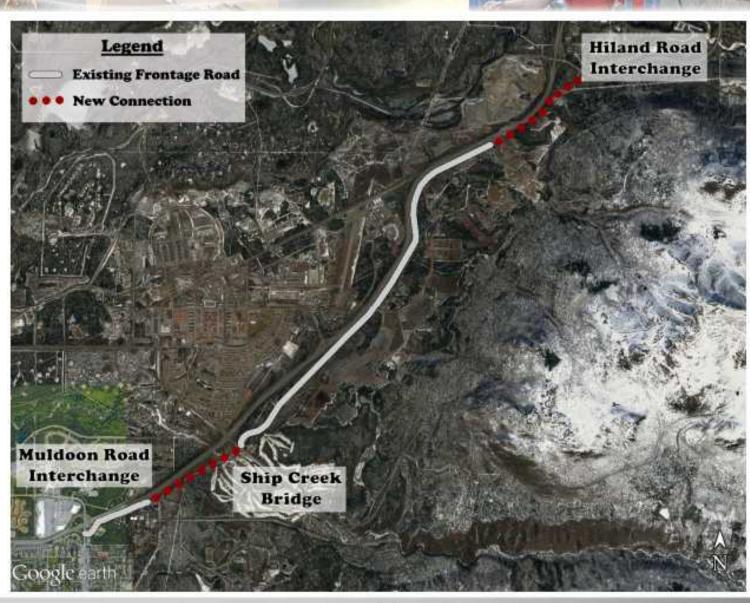
Parallel routes not available:



Crossover Details


SB Segment Closure

Parallel routes not available:



NB & SB Closure

Parallel routes not available:

NB & SB Closure

Thank you

Questions?

11/26/2019 34